

AQA Computer Science A-Level 4.3.3 Reverse Polish

Specification:

4.3.3.1 Reverse Polish – infix transformations

Be able to convert simple expressions in infix form to Reverse Polish notation (RPN) form and vice versa

Be aware of why and where it is used

Reverse Polish Notation

- A way of writing expressions
- Uses postfix notation
- Operators are placed after the operands on which they operate

Prefix

Infix

Postfix (Reverse Polish)

+ 2 3 = 5 2 + 3 = 5 2 3 +

Converting between Infix and Postfix

- Infix expressions can be converted into reverse Polish (and vice versa) by traversing an expression tree
 - o To return an infix expression, use an in order traversal
 - To return a postfix expression, carry out postorder traversal
- Simpler expressions can be converted by observation

Expression Tree

Infix In order traversal Postfix (Reverse Polish) Postorder traversal

 $(4 + 7) \times 9 = 99$ $47 + 9 \times = 99$

Why is reverse Polish notation used?

- Reverse Polish notation eliminates the need for brackets, simplifying expressions
- Reverse Polish notation is well suited to manipulation by a stack
- This makes reverse Polish a popular choice when working with computers

Where is reverse Polish notation used?

- Reverse Polish notation is used in interpreters which are based on stacks:
 - o Bytecode
 - PostScript

